Sains
Malaysiana 52(7)(2023):
1925-1938
http://doi.org/10.17576/jsm-2023-5207-03
Heat
Stress in Vegetables: Impacts and Management Strategies - A Review
(Tekanan Haba pada Sayur-sayuran: Kesan
dan Strategi Pengurusan - Suatu Ulasan)
YUSUF
OPEYEMI OYEBAMIJI1, NORAZIYAH ABD AZIZ SHAMSUDIN1,2,3*, ASMUNI MOHD IKMAL1 & MOHD RAFII YUSOP4
1Department of Biological Sciences and Biotechnology,
Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM
Bangi, Selangor, Malaysia
2Seed Bank Unit,
Natural History Museum, Faculty of Science and Technology, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
3Centre for Insect
Systematics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor, Malaysia
4Institute of Tropical Agriculture and Food Security, Universiti Putra
Malaysia, 43400 UPM Serdang, Selangor, Malaysia
Diserahkan: 16 Februari 2022/Diterima: 22 Jun 2023
Abstract
Global
climate change has not only caused a significant rise in the average temperature
around the world but has also threatened crop productivity and food security. Heat
stress disrupts various plant physiological and biochemical
processes, such as inhibition of growth and development, reduction of photosynthesis rate and nutrient uptake, consequently causing yield losses.
The destructive effects of heat stress are expected to worsen in the
coming years. Thus, it has become imperative to understand how vegetables
respond and adapt to heat stress in order to improve their heat tolerance
ability. Various approaches have been adopted to enhance heat stress tolerance in vegetables,
including modifying cultural practices and crop improvements through several breeding methods. This review gives
comprehensive and up-to-date information on the effects of heat stress on
vegetables;
and existing as well as emerging methods adopted to enhance heat tolerance in
vegetables. It also provides a brief overview of a new method called speed
breeding, which can be leveraged to fast-track the breeding process for
developing heat stress-tolerant vegetables.
Keywords: Breeding method;
environmental stress; food security; high temperature
Abstrak
Perubahan iklim global bukan sahaja menyebabkan kenaikan
suhu purata yang signifikan di seluruh dunia tetapi
juga telah mengancam produktiviti tanaman dan sekuriti makanan. Tekanan haba mengganggu
pelbagai proses fisiologi dan biokimia pokok seperti perencatan pertumbuhan
dan perkembangan, pengurangan kadar fotosintesis dan pengambilan nutrien yang akhirnya menyebabkan pengurangan hasil. Kesan kemusnahan
disebabkan oleh tekanan haba dijangka akan lebih teruk pada
tahun terkehadapan. Oleh itu, adalah penting untuk memahami bagaimana sayur-sayuran bertindak balas
dan beradaptasi dengan tekanan haba untuk meningkatkan keupayaan toleransinya
terhadap tekanan. Pelbagai pendekatan telah diambil bagi
meningkatkan toleransi terhadap tekanan haba dalam sayur-sayuran termasuklah
mengubah suai amalan penanaman dan menambah baik tanaman melalui pelbagai kaedah pembiakbakaan.
Ulasan ini memberikan maklumat yang komprehensif dan terkini tentang kesan
tekanan haba kepada sayur-sayuran dan kaedah sedia ada serta baharu yang diguna
pakai untuk meningkatkan toleransi sayur-sayuran terhadap tekanan haba.
Ulasan ini juga memberi gambaran ringkas tentang kaedah baharu yang dipanggil
pembiakbakaan pantas yang boleh dimanfaatkan untuk mempercepat proses
pembiakbakaan bagi menghasilkan sayur-sayuran yang toleran terhadap tekanan haba.
Kata kunci: Jaminan makanan; kaedah pembiakbakaan; suhu tinggi;
tekanan persekitaran
RUJUKAN
Aboelsoud, H.M. & Ahmed, A.A. 2020. Effect of biochar,
vermicompost and polymer on wheat and maize productivity in sandy soils under
drought stress. Environment, Biodiversity and Soil Security 4:
85-102.
Abouhussein,
S. 2012. Climate change and its impact on the productivity and quality of
vegetable crops (review article). Journal of Applied Sciences Research 8(8): 4359-4383.
Ahmad,
M., Waraich, E.A., Skalicky, M., Hussain, S., Zulfiqar, U., Anjum, M.Z., Habib
ur Rahman, M., Brestic, M., Ratnasekera, D., Lamilla-Tamayo, L., Al-Ashkar, I.
& El Sabagh, A. 2021. Adaptation strategies to improve the resistance of
oilseed crops to heat stress under a changing climate: An overview. Frontiers
in Plant Science 12: 767150.
Ahmar, S., Gill, R.A., Jung, K.H., Faheem, A., Qasim, M.U.,
Mubeen, M. & Zhou, W. 2020a. Conventional and molecular techniques from
simple breeding to speed breeding in crop plants: Recent advances and future
outlook. International Journal of Molecular Sciences 21(7): 2590.
Ahmar, S., Saeed, S., Khan, M.H.U., Ullah Khan, S.,
Mora-Poblete, F., Kamran, M. & Jung, K.H. 2020b. A revolution toward
gene-editing technology and its application to crop improvement. International Journal of
Molecular Sciences 21(16): 5665.
Alayafi, A.A.M. 2020. Exogenous ascorbic acid induces
systemic heat stress tolerance in tomato seedlings: Transcriptional regulation
mechanism. Environmental Science and Pollution Research 27(16):
19186-19199.
Ali, S., Rizwan, M., Arif, M.S., Ahmad, R., Hasanuzzaman, M.,
Ali, B. & Hussain, A. 2020. Approaches in enhancing thermotolerance in
plants: An updated review. Journal of Plant Growth Regulation 39(1):
456-480.
Ali, M., Ayyub, C.M., Silverman, E., Rehman, M.A., Iqbal, S.,
Hussain, Z. & Bazmi, M.S.A. 2021. Evaluation of physiological traits and flowering in Cucumis sativus L. by foliar application of chitosan at three sowing dates grown under hot environment. Journal
of Pure and Applied Agriculture 6(3): 62-75.
Ali, M., Muhammad, I., Alam, M., Khattak, A.M., Akhtar, K.,
Ullah, H. & Gong, Z.H. 2020. The CaChiVI2 gene of Capsicum annuum L. confers resistance against
heat stress and infection of Phytophthora
capsici. Frontiers in Plant Science 11: 219.
Aleem,
S., Sharif, I., Tahir, M., Najeebullah, M., Nawaz, A., Khan, M.I., Batool, A.
& Arshad, W. 2021. Impact of heat stress on cauliflower (Brassica
oleracea var. Botrytis): A physiological assessment. Pakistan
Journal of Agricultural Research 34(3): 479-486.
Al-Said,
F., Hadley, P., Pearson, S., Khan, M.M. & Iqbal, Q. 2018. Effect of high
temperature and exposure duration on stem elongation of iceberg lettuce. Pakistan Journal of Agricultural Sciences 55(1): 95-101.
Annegowda, D.C., Prasannakumar, M.K., Mahesh, H.B.,
Siddabasappa, C.B., Devanna, P., Banakar, S.N. & Prasad, S.R. 2021. Rice blast disease in India: Present status and
future challenges in rice. In Integrative Advance in Rice Research,
edited by Huang, M. IntechOpen Publishing. pp. 1-43.
Arif, M., Jan, T., Riaz, M., Fahad, S., Adnan, M., Ali, K.
& Rasul, F. 2020. Biochar: A remedy for climate change. In Environment,
Climate, Plant and Vegetation Growth, edited by Fahad, S., Hasanuzzaman, M., Alam, M., Ullah, H., Saeed, M., Khan, I.A.
& Adnan, M. Switzerland: Springer Nature.
pp. 151-171.
Ashkani,
S., Rafii, M.Y., Shabanimofrad, M., Miah, G., Sahebi, M., Azizi, P., Tanweer,
F.A., Akhtar, M.S. & Nasehi, A. 2015. Molecular breeding strategy and
challenges towards improvement of blast disease resistance in rice crop. Frontiers
in Plant Science 6: 886.
Ayenan, M.A.T., Danquah, A., Hanson, P., Ampomah-Dwamena, C.,
Sodedji, F.A.K., Asante, I.K. & Danquah, E.Y. 2019. Accelerating breeding
for heat tolerance in tomato (Solanum lycopersicum L.): An integrated
approach. Agronomy 9(11): 720.
Ayyogari, K., Sidhya, P. & Pandit, M.K. 2014. Impact of
climate change on vegetable cultivation - A review. International
Journal of Agriculture, Environment and Biotechnology 7(1): 145-155.
Balal, R.M., Shahid, M.A., Javaid, M.M., Iqbal, Z., Anjum,
M.A., Garcia-Sanchez, F. & Mattson, N.S. 2016. The role of selenium in
amelioration of heat-induced oxidative damage in cucumber under
high-temperature stress. Acta Physiologiae Plantarum 38(6):
1-14.
Begum, N., Qin, C., Ahanger, M.A., Raza, S., Khan, M.I.,
Ashraf, M. & Zhang, L. 2019. Role of arbuscular mycorrhizal fungi in plant
growth regulation: Implications in abiotic stress tolerance. Frontiers
in Plant Science 10: 1068.
Bibi, A., Ibrar, M., Shalmani, A. & Rehan, T. 2021. A review on recent advances in
chitosan applications. Pure and Applied Biology 10(4):
1217-1229.
Bisbis,
M.B., Gruda, N. & Blanke, M. 2018. Potential impacts of climate change on
vegetable production and product quality - A review. Journal of Cleaner
Production 170: 1602-1620.
Carter, S., Shackley, S., Sohi, S., Suy, T.B. & Haefele,
S. 2013. The impact of biochar
application on soil properties and plant growth of pot grown
lettuce (Lactuca sativa) and cabbage (Brassica chinensis). Agronomy 3(2):
404-418.
Chen, S., Saradadevi, R., Vidotti, M.S., Fritsche-Neto, R.,
Crossa, J., Siddique, K.H. & Cowling, W.A. 2021. Female reproductive organs
of Brassica napus are more sensitive than male to transient heat
stress. Euphytica 217(6): 1-12.
Chitwood,
J., Shi, A., Evans, M., Rom, C., Gbur, E.E., Motes, D., Chen, P. & Hensley,
D. 2016. Effect of temperature on seed germination in spinach (Spinacia
oleracea). HortScience 51: 1475-1478.
Dasgan, H.Y., Dere, S., Akhoundnejad, Y. & Arpaci, B.B.
2021. Effects of high-temperature stress during plant cultivation on tomato (Solanum
lycopersicum L.) fruit nutrient content. Journal of Food Quality 2021:
7994417.
Driedonks, N., Rieu, I. & Vriezen, W.H. 2016. Breeding
for plant heat tolerance at vegetative and reproductive stages. Plant Reproduction 29(1): 67-79.
Dong, J., Gruda, N., Li, X., Tang, Y., Zhang, P. & Duan,
Z. 2020. Sustainable vegetable production under changing climate: The impact of
elevated CO2 on yield of vegetables and the interactions with
environments-A review. Journal of Cleaner Production 253:
119920.
Dong, S., Zhang, S., Wei, S., Liu, Y., Li, C., Bo, K. &
Zhang, S. 2020. Identification of quantitative trait loci controlling
high-temperature tolerance in cucumber (Cucumis sativus L.)
seedlings. Plants 9(9): 1155.
Ekka, P., Daniel, S., Larkin, A., Kishore, P. & Singh, H.
2022. Effect of hydrogel and inorganic manure on the growth and yield of lettuce (Lactuca
sativa L.) under citrus-based agroforestry system. International
Journal of Farm Sciences 12(1): 37-40.
Faiz, H., Ayyub,
C.M., Khan, R.W. & Ahmad, R. 2020. Morphological, physiological and
biochemical responses of eggplant (Solanum melongena L.) seedling to
heat stress. Pakistan Journal of Agricultural Sciences 57(2):
1-10.
Fahad, S.,
Hussain, S., Saud, S., Hassan, S., Tanveer, M., Ihsan, M.Z. & Huang, J.
2016. A combined application of biochar and phosphorus alleviates heat-induced
adversities on physiological, agronomical and quality attributes of rice. Plant
Physiology and Biochemistry 103: 191-198.
Formisano, L.; Ciriello,
M.;
Formisano, L., Ciriello, M., Cirillo, V., Pannico, A., El-Nakhel, C.,
Cristofano, F., Duri, L.G., Giordano, M., Rouphael, Y. & De Pascale, S.
2021. Divergent leaf morpho-physiological and anatomical adaptations of four
lettuce cultivars in response to different greenhouse irradiance levels in
early summer season. Plants 10: 1179. https://doi.org/10.3390/plants10061179
Fu, J.,
Momčilović, I. & Prasad, P.V. 2012. Roles of protein synthesis
elongation factor EF-Tu in heat tolerance in plants. Journal of Botany 2012: 835836.
Giordano, M.,
Petropoulos, S.A. & Rouphael, Y. 2021. Response and defence mechanisms of
vegetable crops against drought, heat and salinity stress. Agriculture 11(5):
463.
Giri, A.,
Heckathorn, S., Mishra, S. & Krause, C. 2017. Heat stress decreases levels
of nutrient-uptake and assimilation proteins in tomato roots. Plants 6(1): 6.
Guo, R., Wang, X.,
Han, X., Chen, X. & Wang-Pruski, G. 2020. Physiological and transcriptomic
responses of water spinach (Ipomoea aquatica) to prolonged heat
stress. BMC Genomics 21(1): 1-15.
Hassan, M.U., Chattha, M.U., Khan, I., Chattha, M.B.,
Barbanti, L., Aamer, M. & Aslam, T. 2020. Heat stress in cultivated plants:
Nature, impact, mechanisms, and mitigation strategies - A review. Plant
Biosystems 155(2): 211-234.
Hasanuzzaman, M., Nahar, K., Alam, M., Roychowdhury, R. &
Fujita, M. 2013. Physiological, biochemical, and molecular mechanisms of heat
stress tolerance in plants. International Journal of Molecular Sciences 14(5):
9643-9684.
Hall, A.E. 1992. Breeding for Heat Tolerance. New York: John Wiley
& Sons. pp. 129-168.
Hawrylak-Nowak, B., Dresler, S., Rubinowska, K., Matraszek-Gawron, R., Woch, W., Hasanuzzaman, M. 2018. Selenium biofortification enhances the growth and alters the physiological response of lamb's lettuce grown under high-temperature stress. Plant Physiology and Biochemistry 127: 446-456.
Hazra, P., Anasary, S.H., Sikder, D. & Peter, K.V. 2007.
Breeding tomato (Lycopersicon esculentum Mill) resistant to high
temperature stress. International Journal of Plant Breeding 1(1):
31-40.
Hemmati, H., Gupta, D. & Basu, C. 2015. Molecular
physiology of heat stress responses in plants. In Elucidation of Abiotic Stress Signaling
in Plants, edited by Pandey, G. New York: Springer. pp. 109-142.
Hickey, L.T., Germán, S.E., Pereyra, S.A., Diaz, J.E., Ziems,
L.A., Fowler, R.A. & Dieters, M.J. 2017. Speed breeding for multiple disease resistance in
barley. Euphytica 213(3): 64.
Hidangmayum, A., Dwivedi, P., Katiyar, D. &
Hemantaranjan, A. 2019. Application of chitosan on plant responses with special
reference to abiotic stress. Physiology and Molecular Biology of Plants 25(2):
313-326.
Hussain,
T., Ayyub, C.M., Amjad, M. & Hussain, M. 2021. Analysis of
morpho-physiological changes occurring in chilli genotypes under high
temperature. Pakistan Journal of Agricultural Science 58(1): 43-50.
Jha, U.C., Bohra, A. & Singh, N.P. 2014. Heat stress in crop plants: Its nature, impacts and integrated breeding strategies to improve heat tolerance. Plant Breeding 133(6):
679-701.
Jumrani, K., Bhatia, V.S., Kataria, S., Alamri, S.A.,
Siddiqui, M.H. & Rastogi, A. 2022. Inoculation with arbuscular mycorrhizal
fungi alleviates the adverse effects of high temperatures in soybean. Plants 11(17):
2210.
Kim, Y.C., Kang, Y., Yang, E.Y., Cho, M.C., Schafleitner, R.,
Lee, J.H. & Jang, S. 2021. Applications and major achievements of genome
editing in vegetable crops: A review. Frontiers in Plant Science 2021:
688980.
Kompas, T., Pham, V.H. & Che, T.N. 2018. The effects of
climate change on GDP by country and the global economic gains from complying
with the Paris climate accord. Earth's Future 6(8): 1153-1173.
Krishna, R., Karkute, S.G., Ansari, W.A., Jaiswal, D.K.,
Verma, J.P. & Singh, M. 2019. Transgenic tomatoes for abiotic stress
tolerance: Status and way ahead. Biotech 9(4): 1-14.
Kumar, P. & Srivastava, D.K. 2016. Biotechnological
advancement in genetic improvement of broccoli (Brassica oleracea L.
var. italica), an important vegetable
crop. Biotechnology Letters 38(7):
1049-1063.
Kuyyogsuy, A., Deenamo, N., Khompatara, K., Ekchaweng, K.
& Churngchow, N. 2018. Chitosan enhances resistance in rubber tree (Hevea brasiliensis), through the induction of
abscisic acid (ABA). Physiological and Molecular Plant Pathology 102:
67-78.
Lohani, N., Jain, D., Singh, M.B. & Bhalla, P.L. 2020.
Engineering multiple abiotic stress tolerance in canola, Brassica napus. Frontiers in Plant
Science 11: 3.
Malhi, G.S., Kaur, M., Kaushik, P., Alyemeni, M.N., Alsahli,
A.A. & Ahmad, P. 2021. Arbuscular mycorrhiza in combating abiotic stresses
in vegetables: An eco-friendly approach. Saudi Journal of Biological
Sciences 28(2): 1465.
Malhotra, S.K. 2017. Horticultural crops and climate change: A review. Indian Journal of Agricultural Sciences 87(1): 12-22.2017.
Mattos, L.M., Moretti, C.L., Jan, S., Sargent, S.A., Lima,
C.E.P. & Fontenelle, M.R. 2014. Climate changes and potential impacts on
quality of fruit and vegetable crops. In Emerging Technologies and
Management of Crop Stress Tolerance, edited by Ahmad, P. Massachusetts: Academic Press. pp. 467-486.
Macias-González,
M., Truco, M.J., Bertier, L.D., Jenni, S., Simko, I., Hayes, R.J. &
Michelmore, R.W. 2019. Genetic architecture of tipburn resistance in
lettuce. Theoretical and Applied Genetics 132(8): 2209-2222.
Min, J., Lu, K., Sun, H., Xia, L., Zhang, H. & Shi, W.
2016. Global warming potential in an intensive vegetable cropping system as
affected by crop rotation and nitrogen rate. CLEAN–Soil, Air, Water 44(7): 766-774.
Mnyika, A.W. 2020. Effect of irrigation regime,
super-absorbent polymer and rabbit manure on growth and yield of eggplant (Solanum
melongena L.) in Kilifi County. Master dissertation, Pwani University. pp.
1-88 (Unpublished).
Mohamed, M.H.M. & Zewail, R.M.Y. 2016. Alleviation of
high temperature in cabbage plants grown in summer season using some nutrients,
antioxidants and amino acids as foliar application with cold water. Journal
of Plant Production 7(4): 433-441.
Momčilović, I., Pantelić, D.,
Zdravković-Korać, S., Oljača, J., Rudić, J. & Fu, J.
2016. Heat-induced accumulation of protein synthesis elongation factor 1A
implies an important role in heat tolerance in potato. Planta 244(3):
671-679.
Oladosu, Y., Rafii, M.Y., Samuel, C., Fatai, A., Magaji, U.,
Kareem, I. & Kolapo, K. 2019. Drought resistance in rice from conventional to
molecular breeding: A review. International Journal of Molecular Sciences 20(14):
3519.
Oladosu, Y., Rafii, M.Y., Abdullah, N., Hussin, G., Ramli,
A., Rahim, H.A. & Usman, M. 2016. Principle and application of plant
mutagenesis in crop improvement: A review. Biotechnology &
Biotechnological Equipment 30(1): 1-16.
Ostrand, M.S., DeSutter, T.M., Daigh, A.L., Limb, R.F. &
Steele, D.D. 2020. Superabsorbent polymer characteristics, properties, and applications. Agrosystems, Geosciences &
Environment 3(1): e20074.
Pham, D., Hoshikawa, K., Fujita, S., Fukumoto, S., Hirai, T.,
Shinozaki, Y. & Ezura, H. 2020. A tomato heat-tolerant mutant shows
improved pollen fertility and fruit-setting under long-term ambient high
temperature. Environmental and Experimental Botany 178: 104150.
Rana, M.M., Takamatsu, T., Baslam, M., Kaneko, K., Itoh, K.,
Harada, N. & Mitsui, T. 2019. Salt tolerance improvement in rice through
efficient SNP marker-assisted selection coupled with speed-breeding. International
Journal of Molecular Sciences 20(10): 2585.
Raza, A., Razzaq, A., Mehmood, S.S., Hussain, M.A., Wei, S.,
He, H. & Hasanuzzaman, M. 2021. Omics: The way forward to enhance abiotic
stress tolerance in Brassica napus L. GM Crops and Food 12(1): 251-281.
Salava, H., Thula, S., Mohan, V., Kumar, R. & Maghuly, F.
2021. Application of genome editing in tomato breeding: Mechanisms, advances,
and prospects. International Journal of Molecular Sciences 22(2):
682.
Samantara, K., Bohra, A., Mohapatra, S.R., Prihatini, R.,
Asibe, F., Singh, L. & Varshney, R.K. 2022. Breeding more crops in less
time: A perspective on speed breeding. Biology 11(2): 275.
Seman,
Z.A., Razak, S.A., Ghaffar, M.A., Misman, S.N., Redzuan, R.A., Sew, Y.S. &
Rashid, M.R. 2019. Development of in del
marker for rice blast resistance gene Pi9. Indian Journal of
Agricultural Research 53(3): 277-283.
Sharma,
S. & Manjeet 2020. Heat stress effects in fruit crops: A
review. Agricultural Reviews 41(1): 73-78.
Siddiqui, M., Alamri, S.A., Mutahhar, Y.Y., Al-Khaishany, M.A.,
Al-Qutami, H.M. & Nasir Khan, M.A. 2017. Nitric oxide and calcium induced
physiobiochemical changes in tomato (Solanum lycopersicum) plant under
heat stress. Fresenius Environmental Bulletin 26(2a):
1663-1672.
Singh,
A.K., Singh, M.K., Singh, V., Singh, R., Raghuvanshi, T. & Singh, C. 2017.
Debilitation in tomato (Solanum lycopersicum L.) as result of heat
stress. Journal of Pharmacognosy and Phytochemistry 6(6):
1917-1922.
Shalaby, T.A.,
Abd-Alkarim, E., El-Aidy, F., Hamed, E.S., Sharaf-Eldin, M., Taha, N. & Dos
Reis, A.R. 2021. Nano-selenium, silicon and H2O2 boost
growth and productivity of cucumber under combined salinity and heat
stress. Ecotoxicology and Environmental Safety 212: 111962.
Thuy, T.L. &
Kenji, M. 2015. Effect of high temperature on fruit productivity and seed-set
of sweet pepper (Capsicum annuum L.) in the field condition. Journal
of Agricultural Science and Technology 5(12): 515-520.
Upreti, K.K. &
Sharma, M. 2016. Role of plant growth regulators in
abiotic stress tolerance. In Abiotic Stress Physiology of Horticultural Crops. Springer, New
Delhi, pp. 19-46.
Usman, M.G.,
Rafii, M.Y., Martini, M.Y., Yusuff, O.A., Ismail, M.R. & Miah, G. 2018.
Introgression of heat shock protein (Hsp70 and sHsp) genes into the Malaysian elite chilli variety Kulai (Capsicum annuum L.) through the application of marker-assisted backcrossing
(MAB). Cell Stress and Chaperones 23(2): 223-234.
Wahid, A., Gelani,
S., Ashraf, M. & Foolad, M.R. 2007. Heat tolerance in plants: An
overview. Environmental and Experimental botany 61(3):
199-223.
Wanga, M.A.,
Shimelis, H., Mashilo, J. & Laing, M.D. 2021. Opportunities and challenges
of speed breeding: A review. Plant Breeding 140(2): 185-194.
Watson, A., Ghosh,
S., Williams, M.J., Cuddy, W.S., Simmonds, J., Rey, M.D. & Hickey, L.T.
2018. Speed breeding is a powerful tool to accelerate crop research and
breeding. Nature Plants 4(1): 23-29.
Waqas, M.A., Wang,
X., Zafar, S.A., Noor, M.A., Hussain, H.A., Azher Nawaz, M. & Farooq, M.
2021. Thermal stresses in maize: Effects and management strategies. Plants 10(2): 293.
Wen, J., Jiang,
F., Weng, Y., Sun, M., Shi, X., Zhou, Y. & Wu, Z. 2019. Identification of
heat-tolerance QTLs and high-temperature stress-responsive genes through
conventional QTL mapping, QTL-seq and RNA-seq in tomato. BMC Plant Biology 19(1): 1-17.
Xu, J., Driedonks,
N., Rutten, M.J., Vriezen, W.H., de Boer, G.J. & Rieu, I. 2017. Mapping
quantitative trait loci for heat tolerance of reproductive traits in tomato (Solanum
lycopersicum). Molecular Breeding 37(5): 58.
Xu, C. & Mou,
B. 2018. Chitosan as soil amendment affects lettuce growth, photochemical
efficiency, and gas exchange. HortTechnology 28(4):
476-480.
Ye, C., Ishimaru,
T., Lambio, L., Li, L., Long, Y., He, Z. & Su, Z. 2022. Marker-assisted
pyramiding of QTLs for heat
tolerance and escape upgrades heat resilience in rice (Oryza sativa L.). Theoretical and
Applied Genetics 135(4): 1345-1354.
Yu, W., Wang, L.,
Zhao, R., Sheng, J., Zhang, S., Li, R. & Shen, L. 2019. Knockout of SlMAPK3
enhances tolerance to heat stress involving ROS homeostasis in tomato
plants. BMC Plant Biology 19(1): 1-13.
Zinn, K.E.,
Tunc-Ozdemir, M. & Harper, J.F. 2010. Temperature stress and plant sexual
reproduction: Uncovering the weakest links. Journal of Experimental
Botany 61(7): 1959-1968.
Zhao, C., Nawaz,
G., Cao, Q. & Xu, T. 2022. Melatonin is a potential target for improving
horticultural crop resistance to abiotic stress. Scientia Horticulturae 291:
110560.
*Pengarang
untuk surat-menyurat; email: nora_aziz@ukm.edu.my
|