Sains Malaysiana 52(7)(2023): 1925-1938

http://doi.org/10.17576/jsm-2023-5207-03

 

Heat Stress in Vegetables: Impacts and Management Strategies - A Review

(Tekanan Haba pada Sayur-sayuran: Kesan dan Strategi Pengurusan - Suatu Ulasan)

 

YUSUF OPEYEMI OYEBAMIJI1, NORAZIYAH ABD AZIZ SHAMSUDIN1,2,3*, ASMUNI MOHD IKMAL1 & MOHD RAFII YUSOP4

 

1Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Seed Bank Unit, Natural History Museum, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

3Centre for Insect Systematics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

4Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

 

Diserahkan: 16 Februari 2022/Diterima: 22 Jun 2023

Abstract

Global climate change has not only caused a significant rise in the average temperature around the world but has also threatened crop productivity and food security. Heat stress disrupts various plant physiological and biochemical processes, such as inhibition of growth and development, reduction of photosynthesis rate and nutrient uptake, consequently causing yield losses. The destructive effects of heat stress are expected to worsen in the coming years. Thus, it has become imperative to understand how vegetables respond and adapt to heat stress in order to improve their heat tolerance ability. Various approaches have been adopted to enhance heat stress tolerance in vegetables, including modifying cultural practices and crop improvements through several breeding methods. This review gives comprehensive and up-to-date information on the effects of heat stress on vegetables; and existing as well as emerging methods adopted to enhance heat tolerance in vegetables. It also provides a brief overview of a new method called speed breeding, which can be leveraged to fast-track the breeding process for developing heat stress-tolerant vegetables.

 

Keywords: Breeding method; environmental stress; food security; high temperature

Abstrak

Perubahan iklim global bukan sahaja menyebabkan kenaikan suhu purata yang signifikan di seluruh dunia tetapi juga telah mengancam produktiviti tanaman dan sekuriti makanan. Tekanan haba mengganggu pelbagai proses fisiologi dan biokimia pokok seperti perencatan pertumbuhan dan perkembangan, pengurangan kadar fotosintesis dan pengambilan nutrien yang akhirnya menyebabkan pengurangan hasil. Kesan kemusnahan disebabkan oleh tekanan haba dijangka akan lebih teruk pada tahun terkehadapan. Oleh itu, adalah penting untuk memahami bagaimana sayur-sayuran bertindak balas dan beradaptasi dengan tekanan haba untuk meningkatkan keupayaan toleransinya terhadap tekanan. Pelbagai pendekatan telah diambil bagi meningkatkan toleransi terhadap tekanan haba dalam sayur-sayuran termasuklah mengubah suai amalan penanaman dan menambah baik tanaman melalui pelbagai kaedah pembiakbakaan. Ulasan ini memberikan maklumat yang komprehensif dan terkini tentang kesan tekanan haba kepada sayur-sayuran dan kaedah sedia ada serta baharu yang diguna pakai untuk meningkatkan toleransi sayur-sayuran terhadap tekanan haba. Ulasan ini juga memberi gambaran ringkas tentang kaedah baharu yang dipanggil pembiakbakaan pantas yang boleh dimanfaatkan untuk mempercepat proses pembiakbakaan bagi menghasilkan sayur-sayuran yang toleran terhadap tekanan haba.

 

Kata kunci: Jaminan makanan; kaedah pembiakbakaan; suhu tinggi; tekanan persekitaran

 

RUJUKAN

Aboelsoud, H.M. & Ahmed, A.A. 2020. Effect of biochar, vermicompost and polymer on wheat and maize productivity in sandy soils under drought stress. Environment, Biodiversity and Soil Security 4: 85-102.

Abouhussein, S. 2012. Climate change and its impact on the productivity and quality of vegetable crops (review article). Journal of Applied Sciences Research 8(8): 4359-4383.

Ahmad, M., Waraich, E.A., Skalicky, M., Hussain, S., Zulfiqar, U., Anjum, M.Z., Habib ur Rahman, M., Brestic, M., Ratnasekera, D., Lamilla-Tamayo, L., Al-Ashkar, I. & El Sabagh, A. 2021. Adaptation strategies to improve the resistance of oilseed crops to heat stress under a changing climate: An overview. Frontiers in Plant Science 12: 767150.

Ahmar, S., Gill, R.A., Jung, K.H., Faheem, A., Qasim, M.U., Mubeen, M. & Zhou, W. 2020a. Conventional and molecular techniques from simple breeding to speed breeding in crop plants: Recent advances and future outlook. International Journal of Molecular Sciences 21(7): 2590.

Ahmar, S., Saeed, S., Khan, M.H.U., Ullah Khan, S., Mora-Poblete, F., Kamran, M. & Jung, K.H. 2020b. A revolution toward gene-editing technology and its application to crop improvement. International Journal of Molecular Sciences 21(16): 5665.

Alayafi, A.A.M. 2020. Exogenous ascorbic acid induces systemic heat stress tolerance in tomato seedlings: Transcriptional regulation mechanism. Environmental Science and Pollution Research 27(16): 19186-19199.

Ali, S., Rizwan, M., Arif, M.S., Ahmad, R., Hasanuzzaman, M., Ali, B. & Hussain, A. 2020. Approaches in enhancing thermotolerance in plants: An updated review. Journal of Plant Growth Regulation 39(1): 456-480.

Ali, M., Ayyub, C.M., Silverman, E., Rehman, M.A., Iqbal, S., Hussain, Z. & Bazmi, M.S.A. 2021. Evaluation of physiological traits and flowering in Cucumis sativus L. by foliar application of chitosan at three sowing dates grown under hot environment. Journal of Pure and Applied Agriculture 6(3): 62-75.

Ali, M., Muhammad, I., Alam, M., Khattak, A.M., Akhtar, K., Ullah, H. & Gong, Z.H. 2020. The CaChiVI2 gene of Capsicum annuum L. confers resistance against heat stress and infection of Phytophthora capsiciFrontiers in Plant Science 11: 219.

Aleem, S., Sharif, I., Tahir, M., Najeebullah, M., Nawaz, A., Khan, M.I., Batool, A. & Arshad, W. 2021. Impact of heat stress on cauliflower (Brassica oleracea var. Botrytis): A physiological assessment. Pakistan Journal of Agricultural Research 34(3): 479-486.

Al-Said, F., Hadley, P., Pearson, S., Khan, M.M. & Iqbal, Q. 2018. Effect of high temperature and exposure duration on stem elongation of iceberg lettuce. Pakistan Journal of Agricultural Sciences 55(1): 95-101.

Annegowda, D.C., Prasannakumar, M.K., Mahesh, H.B., Siddabasappa, C.B., Devanna, P., Banakar, S.N.  & Prasad, S.R. 2021. Rice blast disease in India: Present status and future challenges in rice. In Integrative Advance in Rice Research, edited by Huang, M. IntechOpen Publishing. pp. 1-43.

Arif, M., Jan, T., Riaz, M., Fahad, S., Adnan, M., Ali, K. & Rasul, F. 2020. Biochar: A remedy for climate change. In Environment, Climate, Plant and Vegetation Growth, edited by Fahad, S., Hasanuzzaman, M., Alam, M., Ullah, H., Saeed, M., Khan, I.A. & Adnan, M. Switzerland: Springer Nature. pp. 151-171.

Ashkani, S., Rafii, M.Y., Shabanimofrad, M., Miah, G., Sahebi, M., Azizi, P., Tanweer, F.A., Akhtar, M.S. & Nasehi, A. 2015. Molecular breeding strategy and challenges towards improvement of blast disease resistance in rice crop. Frontiers in Plant Science 6: 886.

Ayenan, M.A.T., Danquah, A., Hanson, P., Ampomah-Dwamena, C., Sodedji, F.A.K., Asante, I.K. & Danquah, E.Y. 2019. Accelerating breeding for heat tolerance in tomato (Solanum lycopersicum L.): An integrated approach. Agronomy 9(11): 720.

Ayyogari, K., Sidhya, P. & Pandit, M.K. 2014. Impact of climate change on vegetable cultivation - A review. International Journal of Agriculture, Environment and Biotechnology 7(1): 145-155.

Balal, R.M., Shahid, M.A., Javaid, M.M., Iqbal, Z., Anjum, M.A., Garcia-Sanchez, F. & Mattson, N.S. 2016. The role of selenium in amelioration of heat-induced oxidative damage in cucumber under high-temperature stress. Acta Physiologiae Plantarum 38(6): 1-14.

Begum, N., Qin, C., Ahanger, M.A., Raza, S., Khan, M.I., Ashraf, M. & Zhang, L. 2019. Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance. Frontiers in Plant Science 10: 1068.

Bibi, A., Ibrar, M., Shalmani, A. & Rehan, T. 2021. A review on recent advances in chitosan applications. Pure and Applied Biology 10(4): 1217-1229.

Bisbis, M.B., Gruda, N. & Blanke, M. 2018. Potential impacts of climate change on vegetable production and product quality - A review. Journal of Cleaner Production 170: 1602-1620.

Carter, S., Shackley, S., Sohi, S., Suy, T.B. & Haefele, S. 2013. The impact of biochar application on soil properties and plant growth of pot grown lettuce (Lactuca sativa) and cabbage (Brassica chinensis). Agronomy 3(2): 404-418.

Chen, S., Saradadevi, R., Vidotti, M.S., Fritsche-Neto, R., Crossa, J., Siddique, K.H. & Cowling, W.A. 2021. Female reproductive organs of Brassica napus are more sensitive than male to transient heat stress. Euphytica 217(6): 1-12.

Chitwood, J., Shi, A., Evans, M., Rom, C., Gbur, E.E., Motes, D., Chen, P. & Hensley, D. 2016. Effect of temperature on seed germination in spinach (Spinacia oleracea). HortScience 51: 1475-1478.

Dasgan, H.Y., Dere, S., Akhoundnejad, Y. & Arpaci, B.B. 2021. Effects of high-temperature stress during plant cultivation on tomato (Solanum lycopersicum L.) fruit nutrient content. Journal of Food Quality 2021: 7994417.

Driedonks, N., Rieu, I. & Vriezen, W.H. 2016. Breeding for plant heat tolerance at vegetative and reproductive stages. Plant Reproduction 29(1): 67-79.

Dong, J., Gruda, N., Li, X., Tang, Y., Zhang, P. & Duan, Z. 2020. Sustainable vegetable production under changing climate: The impact of elevated CO2 on yield of vegetables and the interactions with environments-A review. Journal of Cleaner Production 253: 119920.

Dong, S., Zhang, S., Wei, S., Liu, Y., Li, C., Bo, K. & Zhang, S. 2020. Identification of quantitative trait loci controlling high-temperature tolerance in cucumber (Cucumis sativus L.) seedlings. Plants 9(9): 1155.

Ekka, P., Daniel, S., Larkin, A., Kishore, P. & Singh, H. 2022. Effect of hydrogel and inorganic manure on the growth and yield of lettuce (Lactuca sativa L.) under citrus-based agroforestry system. International Journal of Farm Sciences 12(1): 37-40.

Faiz, H., Ayyub, C.M., Khan, R.W. & Ahmad, R. 2020. Morphological, physiological and biochemical responses of eggplant (Solanum melongena L.) seedling to heat stress. Pakistan Journal of Agricultural Sciences 57(2): 1-10.

Fahad, S., Hussain, S., Saud, S., Hassan, S., Tanveer, M., Ihsan, M.Z. & Huang, J. 2016. A combined application of biochar and phosphorus alleviates heat-induced adversities on physiological, agronomical and quality attributes of rice. Plant Physiology and Biochemistry 103: 191-198.

Formisano, L.; Ciriello, M.;

Formisano, L., Ciriello, M., Cirillo, V., Pannico, A., El-Nakhel, C., Cristofano, F., Duri, L.G., Giordano, M., Rouphael, Y. & De Pascale, S. 2021. Divergent leaf morpho-physiological and anatomical adaptations of four lettuce cultivars in response to different greenhouse irradiance levels in early summer season. Plants 10: 1179. https://doi.org/10.3390/plants10061179

 

Fu, J., Momčilović, I. & Prasad, P.V. 2012. Roles of protein synthesis elongation factor EF-Tu in heat tolerance in plants. Journal of Botany 2012: 835836.

 

Giordano, M., Petropoulos, S.A. & Rouphael, Y. 2021. Response and defence mechanisms of vegetable crops against drought, heat and salinity stress. Agriculture 11(5): 463.

Giri, A., Heckathorn, S., Mishra, S. & Krause, C. 2017. Heat stress decreases levels of nutrient-uptake and assimilation proteins in tomato roots. Plants 6(1): 6.

Guo, R., Wang, X., Han, X., Chen, X. & Wang-Pruski, G. 2020. Physiological and transcriptomic responses of water spinach (Ipomoea aquatica) to prolonged heat stress. BMC Genomics 21(1): 1-15.

Hassan, M.U., Chattha, M.U., Khan, I., Chattha, M.B., Barbanti, L., Aamer, M. & Aslam, T. 2020. Heat stress in cultivated plants: Nature, impact, mechanisms, and mitigation strategies - A review. Plant Biosystems 155(2): 211-234.

Hasanuzzaman, M., Nahar, K., Alam, M., Roychowdhury, R. & Fujita, M. 2013. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences 14(5): 9643-9684.

Hall, A.E. 1992. Breeding for Heat Tolerance. New York: John Wiley & Sons. pp. 129-168.

Hawrylak-Nowak, B., Dresler, S., Rubinowska, K., Matraszek-Gawron, R., Woch, W., Hasanuzzaman, M. 2018. Selenium biofortification enhances the growth and alters the physiological response of lamb's lettuce grown under high-temperature stress. Plant Physiology and Biochemistry 127: 446-456.

Hazra, P., Anasary, S.H., Sikder, D. & Peter, K.V. 2007. Breeding tomato (Lycopersicon esculentum Mill) resistant to high temperature stress. International Journal of Plant Breeding 1(1): 31-40.

Hemmati, H., Gupta, D. & Basu, C. 2015. Molecular physiology of heat stress responses in plants. In Elucidation of Abiotic Stress Signaling in Plants, edited by Pandey, G. New York: Springer. pp. 109-142.

Hickey, L.T., Germán, S.E., Pereyra, S.A., Diaz, J.E., Ziems, L.A., Fowler, R.A. & Dieters, M.J. 2017. Speed breeding for multiple disease resistance in barley. Euphytica 213(3): 64.

Hidangmayum, A., Dwivedi, P., Katiyar, D. & Hemantaranjan, A. 2019. Application of chitosan on plant responses with special reference to abiotic stress. Physiology and Molecular Biology of Plants 25(2): 313-326.

Hussain, T., Ayyub, C.M., Amjad, M. & Hussain, M. 2021. Analysis of morpho-physiological changes occurring in chilli genotypes under high temperature. Pakistan Journal of Agricultural Science 58(1): 43-50.

Jha, U.C., Bohra, A. & Singh, N.P. 2014. Heat stress in crop plants: Its nature, impacts and integrated breeding strategies to improve heat tolerance. Plant Breeding 133(6): 679-701.

Jumrani, K., Bhatia, V.S., Kataria, S., Alamri, S.A., Siddiqui, M.H. & Rastogi, A. 2022. Inoculation with arbuscular mycorrhizal fungi alleviates the adverse effects of high temperatures in soybean. Plants 11(17): 2210.

Kim, Y.C., Kang, Y., Yang, E.Y., Cho, M.C., Schafleitner, R., Lee, J.H. & Jang, S. 2021. Applications and major achievements of genome editing in vegetable crops: A review. Frontiers in Plant Science 2021: 688980.

Kompas, T., Pham, V.H. & Che, T.N. 2018. The effects of climate change on GDP by country and the global economic gains from complying with the Paris climate accord. Earth's Future 6(8): 1153-1173.

Krishna, R., Karkute, S.G., Ansari, W.A., Jaiswal, D.K., Verma, J.P. & Singh, M. 2019. Transgenic tomatoes for abiotic stress tolerance: Status and way ahead. Biotech 9(4): 1-14.

Kumar, P. & Srivastava, D.K. 2016. Biotechnological advancement in genetic improvement of broccoli (Brassica oleracea L. var. italica), an important vegetable crop. Biotechnology Letters 38(7): 1049-1063.

Kuyyogsuy, A., Deenamo, N., Khompatara, K., Ekchaweng, K. & Churngchow, N. 2018. Chitosan enhances resistance in rubber tree (Hevea brasiliensis), through the induction of abscisic acid (ABA). Physiological and Molecular Plant Pathology 102: 67-78.

Lohani, N., Jain, D., Singh, M.B. & Bhalla, P.L. 2020. Engineering multiple abiotic stress            tolerance in canola, Brassica napusFrontiers in Plant Science 11: 3.

Malhi, G.S., Kaur, M., Kaushik, P., Alyemeni, M.N., Alsahli, A.A. & Ahmad, P. 2021. Arbuscular mycorrhiza in combating abiotic stresses in vegetables: An eco-friendly approach. Saudi Journal of Biological Sciences 28(2): 1465.

Malhotra, S.K. 2017. Horticultural crops and climate change: A review. Indian Journal of Agricultural Sciences 87(1): 12-22.2017.

Mattos, L.M., Moretti, C.L., Jan, S., Sargent, S.A., Lima, C.E.P. & Fontenelle, M.R. 2014. Climate changes and potential impacts on quality of fruit and vegetable crops. In Emerging Technologies and Management of Crop Stress Tolerance, edited by Ahmad, P. Massachusetts: Academic Press. pp. 467-486.

Macias-González, M., Truco, M.J., Bertier, L.D., Jenni, S., Simko, I., Hayes, R.J. & Michelmore, R.W. 2019. Genetic architecture of tipburn resistance in lettuce. Theoretical and Applied Genetics 132(8): 2209-2222.

Min, J., Lu, K., Sun, H., Xia, L., Zhang, H. & Shi, W. 2016. Global warming potential in an intensive vegetable cropping system as affected by crop rotation and nitrogen rate. CLEAN–Soil, Air, Water 44(7): 766-774.

Mnyika, A.W. 2020. Effect of irrigation regime, super-absorbent polymer and rabbit manure on growth and yield of eggplant (Solanum melongena L.) in Kilifi County. Master dissertation, Pwani University. pp. 1-88 (Unpublished).

Mohamed, M.H.M. & Zewail, R.M.Y. 2016. Alleviation of high temperature in cabbage plants grown in summer season using some nutrients, antioxidants and amino acids as foliar application with cold water. Journal of Plant Production 7(4): 433-441.

Momčilović, I., Pantelić, D., Zdravković-Korać, S., Oljača, J., Rudić, J. & Fu, J. 2016. Heat-induced accumulation of protein synthesis elongation factor 1A implies an important role in heat tolerance in potato. Planta 244(3): 671-679.

Oladosu, Y., Rafii, M.Y., Samuel, C., Fatai, A., Magaji, U., Kareem, I. & Kolapo, K. 2019. Drought resistance in rice from conventional to molecular breeding: A review. International Journal of Molecular Sciences 20(14): 3519.

Oladosu, Y., Rafii, M.Y., Abdullah, N., Hussin, G., Ramli, A., Rahim, H.A. & Usman, M. 2016. Principle and application of plant mutagenesis in crop improvement: A review. Biotechnology & Biotechnological Equipment 30(1): 1-16.

Ostrand, M.S., DeSutter, T.M., Daigh, A.L., Limb, R.F. & Steele, D.D. 2020. Superabsorbent polymer characteristics, properties, and applications. Agrosystems, Geosciences & Environment 3(1): e20074.

Pham, D., Hoshikawa, K., Fujita, S., Fukumoto, S., Hirai, T., Shinozaki, Y. & Ezura, H. 2020. A tomato heat-tolerant mutant shows improved pollen fertility and fruit-setting under long-term ambient high temperature. Environmental and Experimental Botany 178: 104150.

Rana, M.M., Takamatsu, T., Baslam, M., Kaneko, K., Itoh, K., Harada, N. & Mitsui, T. 2019. Salt tolerance improvement in rice through efficient SNP marker-assisted selection coupled with speed-breeding. International Journal of Molecular Sciences 20(10): 2585.

Raza, A., Razzaq, A., Mehmood, S.S., Hussain, M.A., Wei, S., He, H. & Hasanuzzaman, M. 2021. Omics: The way forward to enhance abiotic stress tolerance in Brassica napus L. GM Crops and Food 12(1): 251-281.

Salava, H., Thula, S., Mohan, V., Kumar, R. & Maghuly, F. 2021. Application of genome editing in tomato breeding: Mechanisms, advances, and prospects. International Journal of Molecular Sciences 22(2): 682.

Samantara, K., Bohra, A., Mohapatra, S.R., Prihatini, R., Asibe, F., Singh, L. & Varshney, R.K. 2022. Breeding more crops in less time: A perspective on speed breeding. Biology 11(2): 275.

Seman, Z.A., Razak, S.A., Ghaffar, M.A., Misman, S.N., Redzuan, R.A., Sew, Y.S. & Rashid, M.R. 2019. Development of in del marker for rice blast resistance gene Pi9Indian Journal of Agricultural Research 53(3): 277-283.

Sharma, S. & Manjeet 2020. Heat stress effects in fruit crops: A review. Agricultural Reviews 41(1): 73-78.

Siddiqui, M., Alamri, S.A., Mutahhar, Y.Y., Al-Khaishany, M.A., Al-Qutami, H.M. & Nasir Khan, M.A. 2017. Nitric oxide and calcium induced physiobiochemical changes in tomato (Solanum lycopersicum) plant under heat stress. Fresenius Environmental Bulletin 26(2a): 1663-1672.

Singh, A.K., Singh, M.K., Singh, V., Singh, R., Raghuvanshi, T. & Singh, C. 2017. Debilitation in tomato (Solanum lycopersicum L.) as result of heat stress. Journal of Pharmacognosy and Phytochemistry 6(6): 1917-1922.

Shalaby, T.A., Abd-Alkarim, E., El-Aidy, F., Hamed, E.S., Sharaf-Eldin, M., Taha, N. & Dos Reis, A.R. 2021. Nano-selenium, silicon and H2O2 boost growth and productivity of cucumber under combined salinity and heat stress. Ecotoxicology and Environmental Safety 212: 111962.

Thuy, T.L. & Kenji, M. 2015. Effect of high temperature on fruit productivity and seed-set of sweet pepper (Capsicum annuum L.) in the field condition. Journal of Agricultural Science and Technology 5(12): 515-520.

Upreti, K.K. & Sharma, M. 2016. Role of plant growth regulators in abiotic stress tolerance. In Abiotic Stress Physiology of Horticultural Crops. Springer, New Delhi, pp. 19-46.

Usman, M.G., Rafii, M.Y., Martini, M.Y., Yusuff, O.A., Ismail, M.R. & Miah, G. 2018. Introgression of heat shock protein (Hsp70 and sHsp) genes into the Malaysian elite chilli variety Kulai (Capsicum annuum L.) through the application of marker-assisted backcrossing (MAB). Cell Stress and Chaperones 23(2): 223-234.

Wahid, A., Gelani, S., Ashraf, M. & Foolad, M.R. 2007. Heat tolerance in plants: An overview. Environmental and Experimental botany 61(3): 199-223.

Wanga, M.A., Shimelis, H., Mashilo, J. & Laing, M.D. 2021. Opportunities and challenges of speed breeding: A review. Plant Breeding 140(2): 185-194.

Watson, A., Ghosh, S., Williams, M.J., Cuddy, W.S., Simmonds, J., Rey, M.D. & Hickey, L.T. 2018. Speed breeding is a powerful tool to accelerate crop research and breeding. Nature Plants 4(1): 23-29.

Waqas, M.A., Wang, X., Zafar, S.A., Noor, M.A., Hussain, H.A., Azher Nawaz, M. & Farooq, M. 2021. Thermal stresses in maize: Effects and management strategies. Plants 10(2): 293.

Wen, J., Jiang, F., Weng, Y., Sun, M., Shi, X., Zhou, Y. & Wu, Z. 2019. Identification of heat-tolerance QTLs and high-temperature stress-responsive genes through conventional QTL mapping, QTL-seq and RNA-seq in tomato. BMC Plant Biology 19(1): 1-17.

Xu, J., Driedonks, N., Rutten, M.J., Vriezen, W.H., de Boer, G.J. & Rieu, I. 2017. Mapping quantitative trait loci for heat tolerance of reproductive traits in tomato (Solanum lycopersicum). Molecular Breeding 37(5): 58.

Xu, C. & Mou, B. 2018. Chitosan as soil amendment affects lettuce growth, photochemical efficiency, and gas exchange. HortTechnology 28(4): 476-480.

Ye, C., Ishimaru, T., Lambio, L., Li, L., Long, Y., He, Z. & Su, Z. 2022. Marker-assisted pyramiding of QTLs for heat tolerance and escape upgrades heat resilience in rice (Oryza sativa L.). Theoretical and Applied Genetics 135(4): 1345-1354.

Yu, W., Wang, L., Zhao, R., Sheng, J., Zhang, S., Li, R. & Shen, L. 2019. Knockout of SlMAPK3 enhances tolerance to heat stress involving ROS homeostasis in tomato plants. BMC Plant Biology 19(1): 1-13.

Zinn, K.E., Tunc-Ozdemir, M. & Harper, J.F. 2010. Temperature stress and plant sexual reproduction: Uncovering the weakest links. Journal of Experimental Botany 61(7): 1959-1968.

Zhao, C., Nawaz, G., Cao, Q. & Xu, T. 2022. Melatonin is a potential target for improving horticultural crop resistance to abiotic stress. Scientia Horticulturae 291: 110560.

 

*Pengarang untuk surat-menyurat; email: nora_aziz@ukm.edu.my

 

 

 

   

sebelumnya